

INTERACTIONS

Interaction	particules concernées	Propriété	Portée	Exemple de Loi	Particule messagère	Intensité relative à l'échelle des particules élémentaires
gravitationnelle	Toute particule massique	Attractive	Infinie mais décroissante avec la distance	$F = g \frac{m_a m_b}{d^2}$	Graviton? Masse nulle	10 ⁻³⁸
Electro magnétique	Toute particule chargée	Attractive ou répulsive	Infinie mais décroissante avec la distance	Ex : force électrostatique de coulomb $F = K \frac{q_a q_b}{d^2}$	Photon Masse nulle	10-2
Forte	Nucléons Quarks	Attractive	10 ⁻¹⁵ m Augmente avec la distance		Gluon Masse nulle	1
Faible	Quark Electron Neutrino	Attractive ou répulsive	10 ⁻¹⁸ m		Boson Masse non nulle	10-7

Le serpent de Glashow

Le schéma ci-dessus est une analogie qui montre comment deux corps peuvent interagir à distance par échange d'une « particule messagère » (ici interaction répulsive). Plus le ballon est lourd, plus il est difficile de lancer loin et donc plus les barques doivent être proches.